Back to opcode table

VPMOVQW/VPMOVSQW/VPMOVUSQW—Down Convert QWord to Word

Opcode/Instruction Op /En 64/32 bit Mode Support CPUID Feature Flag Description

EVEX.128.F3.0F38.W0 34 /r

VPMOVQW xmm1/m32 {k1}{z}, xmm2

QVM V/V

AVX512VL

AVX512F

Converts 2 packed quad-word integers from xmm2 into 2 packed word integers in xmm1/m32 with truncation under writemask k1.

EVEX.128.F3.0F38.W0 24 /r

VPMOVSQW xmm1/m32 {k1}{z}, xmm2

QVM V/V

AVX512VL

AVX512F

Converts 8 packed signed quad-word integers from zmm2 into 8 packed signed word integers in xmm1/m32 using signed saturation under writemask k1.

EVEX.128.F3.0F38.W0 14 /r

VPMOVUSQW xmm1/m32 {k1}{z}, xmm2

QVM V/V

AVX512VL

AVX512F

Converts 2 packed unsigned quad-word integers from xmm2 into 2 packed unsigned word integers in xmm1/m32 using unsigned saturation under writemask k1.

EVEX.256.F3.0F38.W0 34 /r

VPMOVQW xmm1/m64 {k1}{z}, ymm2

QVM V/V

AVX512VL

AVX512F

Converts 4 packed quad-word integers from ymm2 into 4 packed word integers in xmm1/m64 with truncation under writemask k1.

EVEX.256.F3.0F38.W0 24 /r

VPMOVSQW xmm1/m64 {k1}{z}, ymm2

QVM V/V

AVX512VL

AVX512F

Converts 4 packed signed quad-word integers from ymm2 into 4 packed signed word integers in xmm1/m64 using signed saturation under writemask k1.

EVEX.256.F3.0F38.W0 14 /r

VPMOVUSQW xmm1/m64 {k1}{z}, ymm2

QVM V/V

AVX512VL

AVX512F

Converts 4 packed unsigned quad-word integers from ymm2 into 4 packed unsigned word integers in xmm1/m64 using unsigned saturation under writemask k1.

EVEX.512.F3.0F38.W0 34 /r

VPMOVQW xmm1/m128 {k1}{z}, zmm2

QVM V/V AVX512F Converts 8 packed quad-word integers from zmm2 into 8 packed word integers in xmm1/m128 with truncation under writemask k1.

EVEX.512.F3.0F38.W0 24 /r

VPMOVSQW xmm1/m128 {k1}{z}, zmm2

QVM V/V AVX512F Converts 8 packed signed quad-word integers from zmm2 into 8 packed signed word integers in xmm1/m128 using signed saturation under writemask k1.

EVEX.512.F3.0F38.W0 14 /r

VPMOVUSQW xmm1/m128 {k1}{z}, zmm2

QVM V/V AVX512F Converts 8 packed unsigned quad-word integers from zmm2 into 8 packed unsigned word integers in xmm1/m128 using unsigned saturation under writemask k1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
QVM ModRM:r/m (w) ModRM:reg (r) NA NA

Description

VPMOVQW down converts 64-bit integer elements in the source operand (the second operand) into packed words using truncation. VPMOVSQW converts signed 64-bit integers into packed signed words using signed saturation. VPMOVUSQW convert unsigned quad-word values into unsigned word values using unsigned saturation.

The source operand is a ZMM/YMM/XMM register. The destination operand is a XMM register or a 128/64/32-bit memory location.

Down-converted word elements are written to the destination operand (the first operand) from the least-significant word. Word elements of the destination operand are updated according to the writemask. Bits (MAX_VL-1:128/64/32) of the register destination are zeroed.

EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation


VPMOVQW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 16
    m (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+15:i] (cid:197) TruncateQuadWordToWord (SRC[m+63:m])
        ELSE
        IF *merging-masking*
            ; merging-masking
            THEN *DEST[i+15:i] remains unchanged*
            ELSE *zeroing-masking*
            ; zeroing-masking
            DEST[i+15:i] (cid:197) 0
        FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL/4] (cid:197) 0;
VPMOVQW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 16
    m (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+15:i] (cid:197) TruncateQuadWordToWord (SRC[m+63:m])
        ELSE
        *DEST[i+15:i] remains unchanged*
        ; merging-masking
    FI;
ENDFOR
VPMOVSQW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 16
    m (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+15:i] (cid:197) SaturateSignedQuadWordToWord (SRC[m+63:m])
        ELSE
        IF *merging-masking*
            ; merging-masking
            THEN *DEST[i+15:i] remains unchanged*
            ELSE *zeroing-masking*
            ; zeroing-masking
            DEST[i+15:i] (cid:197) 0
        FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL/4] (cid:197) 0;
VPMOVSQW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 16
    m (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+15:i] (cid:197) SaturateSignedQuadWordToWord (SRC[m+63:m])
        ELSE
        *DEST[i+15:i] remains unchanged*
        ; merging-masking
    FI;
ENDFOR
VPMOVUSQW instruction (EVEX encoded versions) when dest is a register
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 16
    m (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+15:i] (cid:197) SaturateUnsignedQuadWordToWord (SRC[m+63:m])
        ELSE
        IF *merging-masking*
            ; merging-masking
            THEN *DEST[i+15:i] remains unchanged*
            ELSE *zeroing-masking*
            ; zeroing-masking
            DEST[i+15:i] (cid:197) 0
        FI
    FI;
ENDFOR
DEST[MAX_VL-1:VL/4] (cid:197) 0;
VPMOVUSQW instruction (EVEX encoded versions) when dest is memory
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j (cid:197) 0 TO KL-1
    i (cid:197) j * 16
    m (cid:197) j * 64
    IF k1[j] OR *no writemask*
        THEN DEST[i+15:i] (cid:197) SaturateUnsignedQuadWordToWord (SRC[m+63:m])
        ELSE
        *DEST[i+15:i] remains unchanged*
        ; merging-masking
    FI;
ENDFOR

Intel C/C++ Compiler Intrinsic Equivalent

VPMOVQW __m128i _mm512_cvtepi64_epi16( __m512i a);
VPMOVQW __m128i _mm512_mask_cvtepi64_epi16(__m128i s, __mmask8 k, __m512i a);
VPMOVQW __m128i _mm512_maskz_cvtepi64_epi16( __mmask8 k, __m512i a);
VPMOVQW void _mm512_mask_cvtepi64_storeu_epi16(void * d, __mmask8 k, __m512i a);
VPMOVSQW __m128i _mm512_cvtsepi64_epi16( __m512i a);
VPMOVSQW __m128i _mm512_mask_cvtsepi64_epi16(__m128i s, __mmask8 k, __m512i a);
VPMOVSQW __m128i _mm512_maskz_cvtsepi64_epi16( __mmask8 k, __m512i a);
VPMOVSQW void _mm512_mask_cvtsepi64_storeu_epi16(void * d, __mmask8 k, __m512i a);
VPMOVUSQW __m128i _mm512_cvtusepi64_epi16( __m512i a);
VPMOVUSQW __m128i _mm512_mask_cvtusepi64_epi16(__m128i s, __mmask8 k, __m512i a);
VPMOVUSQW __m128i _mm512_maskz_cvtusepi64_epi16( __mmask8 k, __m512i a);
VPMOVUSQW void _mm512_mask_cvtusepi64_storeu_epi16(void * d, __mmask8 k, __m512i a);
VPMOVUSQD __m128i _mm256_cvtusepi64_epi32(__m256i a);
VPMOVUSQD __m128i _mm256_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm256_maskz_cvtusepi64_epi32( __mmask8 k, __m256i b);
VPMOVUSQD void _mm256_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVUSQD __m128i _mm_cvtusepi64_epi32(__m128i a);
VPMOVUSQD __m128i _mm_mask_cvtusepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVUSQD __m128i _mm_maskz_cvtusepi64_epi32( __mmask8 k, __m128i b);
VPMOVUSQD void _mm_mask_cvtusepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm256_cvtsepi64_epi32(__m256i a);
VPMOVSQD __m128i _mm256_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm256_maskz_cvtsepi64_epi32( __mmask8 k, __m256i b);
VPMOVSQD void _mm256_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVSQD __m128i _mm_cvtsepi64_epi32(__m128i a);
VPMOVSQD __m128i _mm_mask_cvtsepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVSQD __m128i _mm_maskz_cvtsepi64_epi32( __mmask8 k, __m128i b);
VPMOVSQD void _mm_mask_cvtsepi64_storeu_epi32(void * , __mmask8 k, __m128i b);
VPMOVQD __m128i _mm256_cvtepi64_epi32(__m256i a);
VPMOVQD __m128i _mm256_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m256i b);
VPMOVQD __m128i _mm256_maskz_cvtepi64_epi32( __mmask8 k, __m256i b);
VPMOVQD void _mm256_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m256i b);
VPMOVQD __m128i _mm_cvtepi64_epi32(__m128i a);
VPMOVQD __m128i _mm_mask_cvtepi64_epi32(__m128i a, __mmask8 k, __m128i b);
VPMOVQD __m128i _mm_maskz_cvtepi64_epi32( __mmask8 k, __m128i b);
VPMOVQD void _mm_mask_cvtepi64_storeu_epi32(void * , __mmask8 k, __m128i b);

SIMD Floating-Point Exceptions

None

Other Exceptions

EVEX-encoded instruction, see Exceptions Type E6.
If EVEX.vvvv != 1111B.