
Playing with Binary Analysis

Jonathan Salwan,

Sébastien Bardin and Marie-Laure Potet

SSTIC 2017

Deobfuscation of VM based software protection



Topic
● Binary protection

○ Virtualization-based software protection

● Automatic deobfuscation, our approach

● The Tigress challenges

● Limitations

● What next?

● Conclusion



Binary Protection



Binary Protection
● Goal

○ Turn your program to make it hard to analyze

■ Protect your software against reverse engineering

P

P’

Transformation



Binary Protection
● There are several kinds of protection

○ [...]

○ Virtualization-based software protection



Binary Protection - Virtualization
● Also called Virtual Machine (VM)

● Virtualize a custom Instruction Set Architecture (ISA)



Binary Protection - Virtualization
● Also called Virtual Machine (VM)

● Virtualize a custom Instruction Set Architecture (ISA)

bool auth(long user_input) {
long h = secret(user_input);
return (h == 0x9e3779b97f4a7c13);

}

long secret(long x) {
[transformations on x]
return x;

}



Binary Protection - Virtualization
● Also called Virtual Machine (VM)

● Virtualize a custom Instruction Set Architecture (ISA)

bool auth(long user_input) {
long h = secret(user_input);
return (h == 0x9e3779b97f4a7c13);

}

long secret(long x) {
[transformations on x]
return x;

}

Bytecodes - Custom ISA



Binary Protection - Virtualization
● Also called Virtual Machine (VM)

● Virtualize a custom Instruction Set Architecture (ISA)

bool auth(long user_input) {
long h = 0;
VM(opcodes, &h, user_input);
return (h == 0x9e3779b97f4a7c13);

}

long secret(long x) {
[transformations on x]
return x;

}

Bytecodes - Custom ISA



Binary Protection - Virtualization
● Also called Virtual Machine (VM)

● Virtualize a custom Instruction Set Architecture (ISA)

bool auth(long user_input) {
long h = 0;
VM(opcodes, &h, user_input);
return (h == 0x9e3779b97f4a7c13);

}

long secret(long x) {
[transformations on x]
return x;

}

Bytecodes - Custom ISA

Removed



Binary Protection - VM Design (a simple one)
Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1● Close to a CPU design

a. Fetch the opcode pointed via the virtual IP

b. Decode the opcode - mnemonic / operands

c. Dispatch to the appropriate semantics handler

d. Execute the semantics

e. Go to the next instruction or terminate



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1● Close to a CPU design

a. Fetch the opcode pointed via the virtual IP

b. Decode the opcode - mnemonic / operands

c. Dispatch to the appropriate semantics handler

d. Execute the semantics

e. Go to the next instruction or terminate

long secret(long x) {
[transformations on x]
return x;

}

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Bytecodes - Custom ISA

Fetch  :
Decode :
 
Code   :

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0xaabbccdd
Decode : 

Code   :

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0xaabbccdd
Decode : mov r/r

Code   :

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0xaabbccdd
Decode : mov r/r

Code   :

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0xaabbccdd
Decode : mov r/r

Code   : mov r1, input

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 
Decode : 

Code   : mov r1, input

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0x11223344
Decode : 

Code   : mov r1, input

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0x11223344
Decode : mov r/i

Code   : mov r1, input

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0x11223344
Decode : mov r/i

Code   : mov r1, input

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0x11223344
Decode : mov r/i

Code   : mov r1, input
         mov r2, 2

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 
Decode : 

Code   : mov r1, input
         mov r2, 2

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0x5577aabb
Decode : 

Code   : mov r1, input
         mov r2, 2

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0x5577aabb
Decode : mul r/r/r

Code   : mov r1, input
         mov r2, 2

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0x5577aabb
Decode : mul r/r/r

Code   : mov r1, input
         mov r2, 2

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0x5577aabb
Decode : mul r/r/r

Code   : mov r1, input
         mov r2, 2
         mul r3, r1, r2

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 
Decode : 

Code   : mov r1, input
         mov r2, 2
         mul r3, r1, r2

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0x1337dead
Decode : 

Code   : mov r1, input
         mov r2, 2
         mul r3, r1, r2

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0x1337dead
Decode : ret r

Code   : mov r1, input
         mov r2, 2
         mul r3, r1, r2

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0x1337dead
Decode : ret r

Code   : mov r1, input
         mov r2, 2
         mul r3, r1, r2

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 0x1337dead
Decode : ret r

Code   : mov r1, input
         mov r2, 2
         mul r3, r1, r2
         ret r3

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1

Fetch  : 
Decode : 

Code   : mov r1, input
         mov r2, 2
         mul r3, r1, r2
         ret r3

Bytecodes - Custom ISA

Binary Protection - VM Design (a simple one)



Virtual Machine - Standard Reverse Process

?

?

?

?

?

??

Bytecodes

Disassembly

Create a disassembler

Start Reversing

● Reverse and understand the virtual machine’s structure / components

● Create a disassembler and then reverse the bytecodes



Our Approach
Automatic Deobfuscation



Our Approach - Automatic Deobfuscation
● We don’t care about reconstructing a disassembler

● Our goal:



Our Approach - Automatic Deobfuscation
● We don’t care about reconstructing a disassembler

● Our goal:

○ Directly reconstruct a devirtualized binary from the obfuscated one



Our Approach - Automatic Deobfuscation
● We don’t care about reconstructing a disassembler

● Our goal:

○ Directly reconstruct a devirtualized binary from the obfuscated one

○ The crafted binary must have a control flow graph close to the original one



Our Approach - Automatic Deobfuscation
● We don’t care about reconstructing a disassembler

● Our goal:

○ Directly reconstruct a devirtualized binary from the obfuscated one

○ The crafted binary must have a control flow graph close to the original one

○ The crafted binary must have instructions close to the original ones



Our Approach - Automatic Deobfuscation

bool auth(long user_input) {
long h = 0;
VM(opcodes, &h, user_input);
return (h == 0x9e3779b97f4a7c13);

}

long secret(long x) {
[transformations on x]
return x;

}

Bytecodes

Removed

FROM



Our Approach - Automatic Deobfuscation

TO

Obfuscated Traces



Our Approach - Automatic Deobfuscation

THEN FROM

Simplified Traces



Our Approach - Automatic Deobfuscation

bool auth(long user_input) {
long h = secret(user_input);
return (h == 0x9e3779b97f4a7c13);

}

long secret_prime(long x) {
[transformations on x]
return x;

}
TO



Our Approach - Automatic Deobfuscation

bool auth(long user_input) {
long h = secret(user_input);
return (h == 0x9e3779b97f4a7c13);

}

TO

long secret_prime(long x) {
[transformations on x]
return x;

}

Where secret_prime() is semantically 
identical to the original code but without 

the process of the virtual machine



Our Approach - Important fact
● Our approach is based on an important fact:

○ trace P' = instr P + instr VM

Whatever the process of the VM execution, 
at the end, it must execute the original 

instruction (or its equivalent, e.g: div / shr)

Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1



Our Approach - Important fact
● Our approach is based on an important fact:

○ trace P' = instr P + instr VM

Whatever the process of the VM execution, 
at the end, it must execute the original 

instruction (or its equivalent, e.g: div / shr)

Fetching

Decoding

Dispatcher

Operator 2

Terminator

Operator 3Operator 1



Our Approach - Overview
1. Isolate these pertinent instructions using a taint analysis along a trace

2. Keep a semantics transition between these isolated instructions using a SE

3. Concretize everything which is not related to these instructions (discard VM)

4. Perform a code coverage to recover the original CFG (iterate on more traces)

5. Transform our representation into the LLVM one

a. Unfolding program (tree-like program)

6. Recompile with compiler optimizations

a. Compacted program (folding program)



Step 1: Taint Analysis
● Track the input(s) of the function into the process of the VM execution

bool auth(long user_input) {
long h = 0;
VM(opcodes, &h, user_input);
return (h == 0x9e3779b97f4a7c13);

}

long secret(long x) {
[transformations on x]
return x;

}

Custom ISA

Tainted



Step 1: Taint Analysis
● Track the input(s) of the function into the process of the VM execution

● Pertinent instructions isolated 

bool auth(long user_input) {
long h = 0;
VM(opcodes, &h, user_input);
return (h == 0x9e3779b97f4a7c13);

}

long secret(long x) {
[transformations on x]
return x;

}

Custom ISA

Tainted

mov   rsi, qword ptr [rax]
mov   rbx, rsi
shr   rbx, cl
mov   rax, rbx
mov   qword ptr [rdx], rax

mov   rdx, qword ptr [rdx]
mov   qword ptr [rax], rdx

mov   rcx, qword ptr [rax]
xor   rax, rcx
mov   qword ptr [rdx], rax

[...]



Step 1: Taint Analysis
● Track the input(s) of the function into the process of the VM execution

● Pertinent instructions isolated 

mov   rsi, qword ptr [rax]
mov   rbx, rsi
shr   rbx, cl
mov   rax, rbx
mov   qword ptr [rdx], rax

mov   rdx, qword ptr [rdx]
mov   qword ptr [rax], rdx

mov   rcx, qword ptr [rax]
xor   rax, rcx
mov   qword ptr [rdx], rax

[...]



Step 1: Taint Analysis
● Track the input(s) of the function into the process of the VM execution

● Pertinent instructions isolated

○ Now, the problem is that this sub-trace has no sense without the VM’s state

mov   rsi, qword ptr [rax]
mov   rbx, rsi
shr   rbx, cl
mov   rax, rbx
mov   qword ptr [rdx], rax

mov   rdx, qword ptr [rdx]
mov   qword ptr [rax], rdx

mov   rcx, qword ptr [rax]
xor   rax, rcx
mov   qword ptr [rdx], rax

[...]



Step 2: Symbolic Representation
● A symbolic representation is used to provide a sense to these tainted instructions 

mov   rsi, qword ptr [rax]
mov   rbx, rsi
shr   rbx, cl
mov   rax, rbx
mov   qword ptr [rdx], rax

mov   rdx, qword ptr [rdx]
mov   qword ptr [rax], rdx

mov   rcx, qword ptr [rax]
xor   rax, rcx
mov   qword ptr [rdx], rax

[...]



Step 2: Symbolic Representation

mov   rsi, qword ptr [rax]
mov   rbx, rsi
shr   rbx, cl
mov   rax, rbx
mov   qword ptr [rdx], rax

mov   rdx, qword ptr [rdx]
mov   qword ptr [rax], rdx

mov   rcx, qword ptr [rax]
xor   rax, rcx
mov   qword ptr [rdx], rax

[...]

ref!228  := SymVar_0
ref!243  := (((_ extract 63 0) ref!228))
ref!1131 := (
  (bvlshr
    ((_ extract 63 0) ref!243)
    (bvand
      ((_ zero_extend 56) (_ bv5 8))
      (_ bv63 64)
    )
  )
)
ref!1334 := (((_ extract 63 0) ref!1131))

[...]

Symbolic representation 
of a given path

● A symbolic representation is used to provide a sense to these tainted instructions



Step 3: Concretization Policy
● Input(s) of the function are both tainted and symbolized 

● In order to remove the process of the VM execution

○ We concretize every LOAD and STORE

○ We concretize everything which is not related to the input(s)

■ Untainted values are concretized

+

- x

1 x

52

π +

3 4

+

9 x

π 7



Step 4: Code Coverage - Discovering Paths
● In order to find the original CFG, we must discover its paths

○ SMT solver is used onto our symbolic representation



Step 4: Code Coverage - From a Paths Tree to a CFG?
● Two approaches

○ Custom algorithm (not trivial)

○ LLVM optimizations (-02) (the lazy way)



Step 5: Transformation to LLVM-IR
● In order to reconstruct a valid binary and apply paths merging

○ Move from our representation to the LLVM-IR

○ Arybo as crossroad

Arybo IR

Bit-blasting

Medusa

Triton ASTBinary code

Miasm Sspam

LLVM-IR Binary code

Optimizations

https://github.com/quarkslab/arybo



Step 6: Recompilation
● Based on the LLVM-IR we are able to:

○ Recompile a valid (and deobfuscated) code

○ Move to another architecture

○ Apply LLVM’s analysis and optimizations



The Tigress Challenges



The Tigress Challenges
● Tigress

○ C Diversifier/Obfuscator

○ http://tigress.cs.arizona.edu

● Challenges

○ 35 VMs

○ f(x) → x’

■ Function f  is virtualized and we have to find the transformation algorithm



The Tigress Challenges



The Tigress Challenges



Limitations



Limitations
● Our limitations are those of the symbolic execution

○ Code coverage of the virtualized function

■ Complexity of expressions

○ Multi-threading, IPC, asynchronous codes…

● Currently, we also have these limitations:

○ Loops reconstruction

○ Arrays reconstruction

■ Due to our concretization policy

○ Calls graph reconstruction



What Next?



What Next?
● Be able to determine on what designs of VM this approach works and doesn't

● Tests onto others protections



What Next?
● Be able to determine on what designs of VM this approach works and doesn't

● Tests onto others protections

○ Teasing: It’s working well on VMProtect



Demo



Conclusion



Conclusion
● Dynamic Taint Analysis + DSE

○ Powerful against VM based protections simplification

■ Automatic, independent from custom opcode, vpc, dispatcher, etc

● LLVM optimizations

○ Powerful for paths merging (and code simplification)

● Worked well for the Tigress protection

○ They (Tigress team) released a new protection

■ Code obfuscation against symbolic execution attacks ACSAC '16

Recommendation: Protections should also be applied onto the custom ISA instead of 

the process of the VM execution



Thanks - Questions?
https://triton.quarkslab.com

https://github.com/JonathanSalwan/Tigress_protection



Acknowledgements
● Adrien Guinet

○ Arybo support

● Romain Thomas

○ Ideas around path merging

● Gabriel Campana, Fred Raynal, Marion Videau

○ Review, proofreading


