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Binary Protections



Binary Protections
● Goal

○ Transform your program to make it hard to analyse

■ Protect your software against reverse engineering (Intellectual Property)
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Binary Protections
● There are several kinds of protections

○ Anti-Tampering

■ Anti-debug

■ Anti-VM

■ Integrity checks

○ Data protection

■ Data encoding

■ Data encryption

■ Opaque constants

○ Code protection

■ Code flattening

■ Junk code injection

■ Operations encoding

■ Virtualization-based software protection



Binary Protection - Virtualization Design (a simple one)
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● Also called Virtual Machine (VM)

● Virtualize a custom Instruction Set Architecture (ISA)

● Close to a CPU design

○ Fetch the opcode pointed via the virtual IP (VPC)

○ Decode the opcode - mnemonic / operands

○ Dispatch to the appropriate semantics handler

○ Execute the semantics

○ Go to the next instruction or terminate

Bytecodes - Custom ISA



Virtual Machine - Challenges for a Reverser
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1. Identify that the obfuscated program is virtualized, and identify its inputs

2. Identify each component of the virtual machine

3. Understand how these components work together

4. Understand how VPC is computed

5. Create a disassembler for the custom ISA

6. Start to analyse the original behavior



State of the Art
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Our Approach - Automatic Deobfuscation
Key intuition:

obfuscated trace = original instructions + virtual instructions

0. Identify inputs

1. On a trace, isolate pertinent instructions using a dynamic taint analysis

2. Build a symbolic representation of these tainted instructions

3. Perform a path coverage analysis to reach new tainted paths

4. Reconstruct a devirtualized binary from the path-tree of pertinent instructions



Step 1 - Dynamic Taint Analysis
● Goal: Separate original instructions from virtual machine instructions

● Input: A protected binary

● Process: Taint user inputs (discovered over Step-0) and execute

● Output: Two sub-traces of instructions

○ Tainted instructions = pertinent instructions



Step 2 - Symbolic Representation
● Goal: Abstract the pertinent instruction sub-trace in terms of symbolic 

expressions

a. Prepare a dynamic symbolic exploration (Step-3)

b. Provide a symbolic representation to ease translation (Step-4)

● Input: A sub-trace of pertinent instructions

● Process: Represent the trace execution as symbolic expressions and concretize 

everything which is not tainted (guided by Step-1).

● Output: A sub-trace of pertinent instructions as symbolic expressions



Step 3 - Path Coverage
● Goal: Reconstruct the whole program behavior

● Input: A sub-trace of pertinent instructions as symbolic expressions

● Process: Perform a dynamic symbolic exploration based on pertinent instructions

● Output: A path-tree of pertinent instructions as symbolic expressions



Step 4 - Generate a New Binary
● Goal: Provide a new binary, devirtualized

● Input: A path-tree of pertinent instructions as symbolic expressions

● Process: Translate the symbolic representation to LLVM-IL, then compile and 

optimize

● Output: A new binary



Experiments



Experiments
● Controlled Experiment Setup

○ 920 protected binaries

● Uncontrolled Experiment Setup (Tigress challenges)

○ 25 protected binaries



Controlled Experiment Setup



Controlled Experiment Setup



Experiments: Criteria
C1. Precision

C2. Efficiency

C3. Robustness w.r.t. the protection



Experiments Results: Precision (C1)
● Objectives:

○ Correctness: Is the deobfuscated code semantically equivalent to the original code?

○ Conciseness: Is the size of the deobfuscated code similar to the size of the original code?

● Metrics used:

○ Correctness: P(seed) == P’(seed)

○ Conciseness:

■ Ratio of the number of instructions Original → Obfuscated

■ Ratio of the number of instructions Original → Deobfuscated



Experiments Results: Efficiency (C2)
● Objective:

○ Efficiency (scalability):

■ How much time?

■ How much resources?

● Metrics used:

○ We measure the time at every 10,000 instructions handled

○ We measure the RAM consumed from the Step-1 to Step-4



Experiments Results: Efficiency (C2)



Experiments Results: Influence of Protections (C3)
● Objective:

○ Robustness: Do specific protections impact our analysis more than others?

● Metrics used:

○ We consider the conciseness metrics



Experiments Results: Influence of Protections (C3)



Experiments: Tigress Challenges



Experiments Results: Tigress Challenges

Tigress Challenges

VM-0 VM-1 VM-2 VM-3 VM-4

0000 3.85s 9.20s 3.27s 4.26s 1.58s

0001 1.26s 1.42s 3.27s 2.49s 1.74s

0002 6.58s 2.02s 2.63s 4.85s 3.82s

0003 45.6s 11.3s 8.84s 4.84s 21.6s

0004 361s 315s 588s 8049s 1680s

Tigress Challenges

VM-0 VM-1 VM-2 VM-3 VM-4

0000 x0.85 x1.09 x0.73 x0.89 x1.4

0001 x0.41 x0.60 x0.26 x0.22 x0.53

0002 x0.29 x0.28 x0.51 x1.4 x0.42

0003 x1.10 x1.17 x1.57 x0.46 x0.44

0004 x0.81 x0.38 x0.70 x0.37 x0.53

Solving time (seconds) Ratio (size) original → deobfuscated



Limits and Mitigations



Limits
● Our approach is geared at programs with a small number of tainted paths

● Our current DSE model does not support user-dependent memory access

● Out of scope of our symbolic reasoning:

○ Multithreading

○ Intensive floating-point arithmetic

○ System calls

● Loops and recursive calls are handled as inlined or unrolled code

○ Increase considerably the size of the devirtualized code



Mitigations (potential defenses)
● Attacking our steps

○ The more the taint is interlaced with VM components, the less our approach will be precise

○ Hash functions over jump conditions to break paths exploration

■ E.g: if (hash(tainted_x) == 0x1234)

● Protecting the bytecode instead of the VM

○ If the virtual machine is broken, the attacker gets as a result an obfuscated pseudo code.



Thanks - Questions?
https://triton.quarkslab.com

https://github.com/JonathanSalwan/Tigress_protection


